[1] Yu, F., Su, L., Li, X., Zhao, Y. 2024. Impact dynamics of granular flow on rigid barriers: insights from numerical investigation using material point method. Journal of Mountain Science, 21(12):4083-4111. https://doi.org/10.1007/s11629-024-9032-y
[2] Yu, F., Su, L., Li, X., Zhao, Y. 2024. Mobility and dynamic erosion process of granular flow: insights from numerical investigation using material point method. Journal of Mountain Science, 21(8):2713-2738. https://doi.org/10.1007/s11629-023-8502-y
[3] Yu, F. 2023. State-dependent behavior of weathered sands incorporating progressive particle breakage in drained triaxial tests. Acta Geotechnica, 18(8):3955-3976. https://doi.org/10.1007/s11440-023-01822-7
[4] Yu, F., Zhao, C., Liu, W. 2022. On single particle breakage behavior of crushable weathered sands. Journal of Mountain Science, 19(12):3627-3644. https://doi.org/10.1007/s11629-022-7621-1
[5] Yu, F., Su, L., Peng, X. 2022. Influence of particle breakage on the isotropic compressibility of sands. Journal of Mountain Science, 19(7):2086-2099. https://doi.org/10.1007/s11629-022-7390-x
[6] Yu, F. 2022. A generalized dilatancy angle equation of granular soil. Journal of Mountain Science, 19(5):1456-1463. https://doi.org/10.1007/s11629-021-7099-2
[7] Yu, F. 2021. State-dependent behavior of a crushable sand in drained triaxial tests. Journal of Testing and Evaluation, 49(6):4506-4525. https://doi.org/10.1520/JTE20200546
[8] Yu, F., Peng, X., Su, L. 2021. Influence of grain segregation on the behavior of sand in triaxial tests. Journal of Mountain Science, 18(10):2776-2790. https://doi.org/10.1007/s11629-021-6709-3
[9] Yu, F., Su, L. 2021. Experimental investigation of mobility and deposition characteristics of dry granular flow. Landslides, 18(5):1875-1887. https://doi.org/10.1007/s10346-020-01593-2
[10] Yu, F., Zhang, C., Xie, Q., Su, L., Zhao, T., Jan, M.Q. 2021. Particle breakage of sand subjected to friction and collision in drum tests. Journal of Rock Mechanics and Geotechnical Engineering, 13(2):390-400. https://doi.org/10.1016/j.jrmge.2020.08.004
[11] Yu, F. 2021. Particle breakage in granular soils: a review. Particulate Science and Technology, 39(1):91-100. https://doi.org/10.1080/02726351.2019.1666946
[12] Yu, F. 2019. Influence of particle breakage on behavior of coral sands in triaxial tests. International Journal of Geomechanics, 19(12):04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524
[13] Yu, F. 2018. Particle breakage and the undrained shear behavior of sands. International Journal of Geomechanics, 18(7):04018079. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001203
[14] Yu, F. 2018. Particle breakage in triaxial shear of a coral sand. Soils and Foundations, 58(4):866-880. https://doi.org/10.1016/j.sandf.2018.04.001
[15] Yu, F., Peng, X., Su, L. 2017. A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China. Journal of Mountain Science, 14(9):1739-1750. https://doi.org/10.1007/s11629-016-4193-y
[16] Yu, F. 2017. Characteristics of particle breakage of sand in triaxial shear. Powder Technology, 320:656-667. https://doi.org/10.1016/j.powtec.2017.08.001
[17] Yu, F. 2017. Particle breakage and the critical state of sands. Géotechnique, 67(8):713-719. https://doi.org/10.1680/jgeot.15.P.250
[18] Yu, F. 2017. Particle breakage and the drained shear behavior of sands. International Journal of Geomechanics, 17(8):04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919
[19] Yu, F. 2017. Stress-dilatancy behavior of sand incorporating particle breakage. Acta Geotechnica Slovenica, 14(1):55-61. http://fgserver6.fg.um.si/journal-ags/2017-1/article-5.asp
[20] Yu, F., Su, L. 2016. Particle breakage and the mobilized drained shear strengths of sand. Journal of Mountain Science, 13(8):1481-1488. https://doi.org/10.1007/s11629-016-3870-1