您的当前位置:首页 > 研究队伍 > 副高人员
副高人员

谢馨瑶

时间:2025-04-11  来源: 文本大小:【 |  | 】  【打印

姓名

谢馨瑶

性别

职务

职称

副研究员

通讯地址

四川省成都市天府新区群贤南街189,中国科学院、水利部成都山地灾害与环境研究所

邮编

610213

电子邮件

xinyaoxie@imde.ac.cn

简 历

2011.09--2015.06中南大学 本科学习

2015.09--2021.06中国科学院、水利部成都山地灾害与环境研究所 博士研究生

2020.01--2020.12加拿大多伦多大学 国家公派博士研究生

2021.07--2024.02中国科学院、水利部成都山地灾害与环境研究所 助理研究员

2024.02--中国科学院、水利部成都山地灾害与环境研究所 副研究员

研究领域

主要从事山地碳水过程遥感监测理论方法与应用研究,重点涉及山地碳水循环过程关键参数遥感估算建模与尺度扩展,山地全球变化遥感监测,山地灾害风险和极端事件遥感识别、监测与分析等

获奖及荣誉

[1]中科院青年促进会人才资助, 2023-2026;

[2]中科院特别研究助理人才资助, 2022-2023;

[3]中国科学院院长特别奖,2021

[4]四川省优秀毕业生,2021

代表性论著

以第一/通讯作者发表论文21,含中科院1/TOPJGR系列期刊论文17篇;

[1]Xie, X., et al. Divergent Ecological Restoration Driven by Afforestation Along the North and South Banks of the Yarlung Zangbo Middle Reach.Land Degradation & Development, 2025, 36 (2)

[2]Wang, J., Wang, Y.,Xie, X.*, Zhao, W., Wu, C., Guan, X., & Yang, T. (2024). Climate-Induced Uncertainty in Modeling Gross Primary Productivity From the Light Use Efficiency Approach. Journal of Geophysical Research: Biogeosciences, 129, e2024JG008394

[3]Xie, X., et al. TAVIs: Topographically adjusted vegetation index for a reliable proxy of gross primary productivity in mountain ecosystems.IEEE Transactions on Geoscience and Remote Sensing, 2023, 64 (2)

[4]Xie, X., et al. A Practical Algorithm for Correcting Topographical Effects on Global GPP Products.Journal of Geophysical Research: Biogeosciences, 2023. 128(8).

[5]Xie, X., et al. How is the performance of satellite-based product suites in monitoring long-term dynamics of vegetation photosynthesis over global mountainous areas?International Journal of Applied Earth Observation and Geoinformation, 2023. 119: 103325.

[6]Xie, X., et al. A fine spatial resolution estimation scheme for large-scale gross primary productivity (GPP) in mountain ecosystems by integrating an eco-hydrological model with the combination of linear and non-linear downscaling processes.Journal of Hydrology, 2023. 616: 128833.

[7]Xie, X., et al. Characterizing the effect of scaling errors on the spatial downscaling of mountain vegetation gross primary productivity.Geo-spatial Information Science, 2023. 259: 82-94.

[8]Xie, X., et al. Long-term topographic effect on remotely sensed vegetation index-based gross primary productivity (GPP) estimation at the watershed scale.International Journal of Applied Earth Observation and Geoinformation, 2022. 108.

[9]Xie, X., et al. Quantifying Scaling Effect on Gross Primary Productivity Estimation in the Upscaling Process of Surface Heterogeneity.Journal of Geophysical Research: Biogeosciences, 2022. 127(7).

[10]Xie, X., et al. Spatial Scaling of Gross Primary Productivity Over Sixteen Mountainous Watersheds Using Vegetation Heterogeneity and Surface Topography.Journal of Geophysical Research: Biogeosciences, 2021. 126(5).

[11]Xie, X., et al. A practical topographic correction method for improving Moderate Resolution Imaging Spectroradiometer gross primary productivity estimation over mountainous areas.International Journal of Applied Earth Observation and Geoinformation, 2021. 103: 102522.

[12]Xie, X., et al. Comparing Three Remotely Sensed Approaches for Simulating Gross Primary Productivity over Mountainous Watersheds: A Case Study in the Wanglang National Nature Reserve, China.Remote Sensing, 2021. 10: 3567

[13]Xie, X., et al. An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas.Journal of Geophysical Research: Atmospheres, 2020. 125(13).

[14]Xie, X., et al. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas.Agricultural and Forest Meteorology, 2020. 295: 108193.

[15]Xie, X.et al. Assessments of gross primary productivity estimations with satellite data-driven models using eddy covariance observation sites over the northern hemisphere.Agricultural and Forest Meteorology, 2020. 280: 107771.

[16]Xie, X., et al. Assessment of five satellite-derived LAI datasets for GPP estimations through ecosystem models.Science of the Total Environment, 2019. 690: 1120-1130.

[17]Xie, X., et al. Uncertainty analysis of multiple global GPP datasets in characterizing the lagged effect of drought on photosynthesis.Ecological Indicators, 2020. 113: 106224.

[18]Xie, X., et al. Derivation of temporally continuous leaf maximum carboxylation rate (Vcmax) from the sunlit leaf gross photosynthesis productivity through combining BEPS model with light response curve at tower flux sites.Agricultural and Forest Meteorology, 2018. 259: 82-94.

[19]Xie, X., et al. Spatial Downscaling of Gross Primary Productivity Using Topographic and Vegetation Heterogeneity Information: A Case Study in the Gongga Mountain Region of China.Remote Sensing, 2018. 10: 647

[20]谢馨瑶,多尺度山地植被GPP遥感估算中的误差来源解析, 2023,遥感学报.

[21]谢馨瑶,大尺度森林碳循环过程模拟模型综述, 2018, 38,生态学报.

在研项目

[1]国家自然科学基金面上项目,山地植被生产力与蒸散发遥感协同估算及其地形效应研究, 2025-2028;

[2]国家重点研发子课题,多目标约束下的生态系统多功能协同增效空间优化策略,2025-2028;

[3]国家自然科学基金青年项目,耦合多地表过程的山地植被总初级生产力遥感估算时空尺度协同扩展研究,2023-2025;

[4]所部署自由探索项目,山地植被碳循环过程高精度遥感监测和精细化模拟,2023-2025;

[5]中国博士后面上一等资助,山地高空间分辨率植被总初级生产力遥感估算中的尺度扩展方法研究,2022-2023;

[6]中国博士后站中特别资助,山地植被光合作用过程高精度遥感监测和精细化模拟,2023-2024;

[7]四川省青年基金,若尔盖高原区域时空无缝山地植被总初级生产力遥感估算研究,2024-2025;



版权所有:中国科学院、水利部成都山地灾害与环境研究所 蜀ICP备05003828号川公网安备 51010702001669号
地址:四川省成都市天府新区群贤南街189号 邮编:610213 | 联系我们