您的当前位置:首页 > 研究生教育 > 导师介绍
导师介绍

李爱农

时间:2011-09-06  来源: 文本大小:【 |  | 】  【打印

李爱农,

研究员、博导

个人简介:

李爱农(1974-),男,汉族,安徽庐江人,中共党员,理学博士,研究员(二级),博士生导师。

招生专业:

自然地理学(山地遥感方向)(博士)、地图学与地理信息系统(硕士)

学习与工作经历:

学习经历:

1993.9-1997.7  西南交通大学(学士);

2001.9-2003.12  中国科学院大学(硕士);

2004.9-2007.7  中国科学院大学(博士);

2008.2-2010.5  美国马里兰大学(博士后)。

工作经历:

1997.7-2006.12 中国科学院水利部成都山地灾害与环境研究所,研究实习员、助理研究员

2005.2-2005.8  美国马里兰大学地理系,访问学者

2007.1-2010.7  中国科学院水利部成都山地灾害与环境研究所,副研究员

2008.2-2010.5  美国马里兰大学地理系,访问研究员

2010.7-至今  中国科学院水利部成都山地灾害与环境研究所,研究员

研究方向及科研工作:

山地定量遥感理论、方法及其综合应用研究。

在研主持项目:

国家重点研发计划项目“山地生态系统全球变化关键参数立体观测与高分辨率产品研制”(2021-2025);

国家重大研发计划项目课题“典型山地生态系统全球变化关键参数星--地立体观测与时空尺度扩展”(2021-2025);

国家自然科学基金重大项目陆表智慧化定量遥感的理论与方法研究”专题“重难点地表覆盖制”(2021-2025

中国科学院任务/战略性先导科技专项(A类)子课题“一带一路重要经济廊道生态环境遥感监测与综合评估”(2018-2022);

中央级科学事业单位改善科研条件专项资金科研装备项目“山地地表过程和生物多样性天空地一体化监测平台”(2022-2023);

国家自然科学基金重点项目“山地典型生态参量遥感反演建模及其时空表征能力研究”(2017-2021)。

社会任职、荣誉称号:

四川省学术和技术带头人(2021)、获中国科学院优秀导师奖2021)、国家高层次人才计划入选者(2018)、科技部中青年科技创新领军人才(2016)、四川省引进海外高层次人才(2012年)中科院人才计划A类)入选者2010年)《遥感学报》副主编、国际数字地球学会(CNISDE)数字山地专业委员会主任获爱思唯尔国际擎天神奖、国际环境信息协会最佳论文奖、全国青年地理科技奖、中国自然资源学会青年科技奖、中国测绘地理信息学会科学技术奖、四川省青年科技奖等奖项

代表性论文论著:

[1]  李爱农边金虎靳华安山地遥感[M]. 北京科学出版社, 2016.

[2] 李爱农, 雷光斌, 边金虎, .山地土地利用/覆被遥感监测[M]. 北京:科学出版社, 2021.

[3]  Li Ainong, Deng Wei, Zhao Wei. Land Cover Change and Its Eco-Environmental Response in Nepal[M]. Singapore, Springer-Nature, 2017.

[4] 邓伟李爱农(副主编)南希陈昱廖克中国数字山地图[M]北京中国地图出版社, 2015.

[5] 邓伟, 李爱农(副主编). 南亚地理资源与环境[M].成都:四川科技出版社,2017.

[6] 李爱农*边金虎张正健山地遥感主要研究进展、发展机遇与挑战[J]遥感学报, 2016, 20(5): 1199-1215.

[7] 李爱农*边金虎张正健若尔盖高原区域碳收支参量多尺度遥感综合观测试验:科学目标与试验设计[J]遥感技术与应用, 2016, 31(3): 405-416.

[8] 李爱农*尹高飞靳华安山地地表生态参量遥感反演的理论、方法与问题[J]遥感技术与应用, 2016, 31(1): 1-11.

[9] 李爱农*边金虎尹高飞山地典型生态参量遥感反演建模及其时空表征能力研究[J]地球科学进展, 2018, 33(2): 141-151.

[10] 李爱农*,尹高飞,张正健,. 基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性, 2018,26(08): 819-827.

[11] 李爱农*张正健雷光斌四川芦山“4·20”强烈地震核心区灾损遥感快速调查与评估[J]自然灾害学报, 2013, 22(6): 8-18.

[12] 李爱农*南希张正健茂县“6.24”特大高位远程崩滑灾害遥感回溯与应急调查[J]自然灾害学报, 2018, 27(2):1-9.

[13] 李爱农*, 南希, 张正健,. 特大山地灾害遥感应急响应调查方法与案例[J]. 中国减灾, 2018,(19): 42-45.

[14] Hu, G. and Li, A.*. SGOT: A Simplified Geometric-Optical Model for Crown Scene Components Modeling over Rugged Terrain [J]. Remote Sensing , 2022, 14(8): 1821.

[15] Naboureh, A., Li, A.*, H. Ebrahimy, et al. Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102607.

[16] Jin, Y., Li, A.*, J. Bian, et al. Spatiotemporal analysis of ecological vulnerability along Bangladesh-China-India-Myanmar economic corridor through a grid level prototype model [J]. Ecological Indicators, 2021, 120: 106933.

[17] Xie, X. and Li, A.*. An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas [J]. Journal of Geophysical Research: Atmospheres, 2021, 125(13): e2019JD031702.

[18] Xie, X. and Li, A.*. Development of a topographic-corrected temperature and greenness model (TG) for improving GPP estimation over mountainous areas [J]. Agricultural and Forest Meteorology, 2020, 295: 108193.

[19]  Bian, J., Li, A.*, G. Lei, et al. Global high-resolution mountain green cover index mapping based on Landsat images and Google Earth Engine [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 63-76.

[20] Lei, G., Li, A.*, J. Bian, et al. OIC-MCE: A Practical Land Cover Mapping Approach for Limited Samples Based on Multiple Classifier Ensemble and Iterative Classification [J]. Remote Sensing, 2020, 12(6): 987.

[21] Jin, H., Li, A.*, W. Xu, et al. Evaluation of topographic effects on multiscale leaf area index estimation using remotely sensed observations from multiple sensors [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 176-188.

[22] Jin, H., Li, A.*, G. Yin, et al. A Multiscale Assimilation Approach to Improve Fine-Resolution Leaf Area Index Dynamics [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8153-8168.

[23] Tan, J.,  Li, A.*, Lei, G., et al. A novel and direct ecological risk assessment index for environmental degradation based on response curve approach and remotely sensed data [J]. Ecological Indicators, 2019, 98:783-793.

[24] Tan, J.,  Li, A.*, Lei, G., et al. A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts [J]. Ecological Modelling, 2019, 410: 108783.

[25] Li, A.*, W. Deng, W. Zhao, et al. A geo-spatial database about the eco-environment and its key issues in South Asia [J]. Big Earth Data, 2018, 2(3): 298-319.

[26] Xie, X., Li, A.*, Yin, G., et al. Derivation of temporally continuous leaf maximum carboxylation rate (Vcmax) from the sunlit leaf gross photosynthesis productivity through combining BEPS model with light response curve at tower flux sites [J]. Agricultural and Forest Meteorology, 2018, 259:82-94,

[27] Bian, J., Li, A.*, C. Huang, et al. A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance datasets [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 189-201.

[28] Zhao, W., N. Sánchez, H. Lu and Li, A.*. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression [J]. Journal of Hydrology, 2018, 563: 1009-1024.

[29] Yin, G., LI, A.*, Wu, S., et al. PLC: A simple and semi-physical topographic correction method for vegetation canopies based on path length correction [J]. Remote Sensing of Environment, 2018, 215:184-198.

[30] Bian, J., Li, A.*, Zhang, Z., et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1 A/B constellation images and an adaptive endmember selection LSMM model [J]. Remote Sensing of Environment, 2017, 197: 98-114.

[31] Yin, G., LI, A.*, Zhao, W., et al. Modeling Canopy Reflectance Over Sloping Terrain Based on Path Length Correction [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4597 - 4609.

[32] Yin, G., Li, A.*, Jin, H., et al. Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO [J]. Agricultural and Forest Meteorology, 2017, 233(2017): 209-221.

[33] Zhao, W., Li, A.*, Zhao, T. Potential of Estimating Surface Soil Moisture With the Triangle-Based Empirical Relationship Model [J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(11): 6494-6504.

[34] Zhao, W., Li, A.*, Jin, H., et al. Performance Evaluation of the Triangle-Based Empirical Soil Moisture Relationship Models Based on Landsat-5 TM Data and In Situ Measurements [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2632-2645.

[35] Tan, J., Li, A.*, Lei, G., et al. Preliminary assessment of ecosystem risk based on IUCN criteria in a hierarchy of spatial domains: A case study in Southwestern China [J]. Biological Conservation, 2017, 215(2017): 152-161.

[36] Lei, G., Li, A.*, Bian, J., et al. Land Cover Mapping in Southwestern China Using the HC-MMK Approach [J]. Remote Sensing, 2016, 8(4): 305.

[37] Wang, J., Li, A.*, Bian, J. Simulation of the Grazing Effects on Grassland Aboveground Net Primary Production Using DNDC Model Combined with Time-Series Remote Sensing Data—A Case Study in Zoige Plateau, China [J]. Remote Sensing, 2016, 8(3): 168.

[38] Bian, J., Li, A.*, Wang, Q., et al. Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China [J]. Remote Sensing, 2016, 7(12): 16647-16671.

[39] Jin, H., Li, A.*, Wang, J., et al. Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data [J]. European Journal of Agronomy, 2016, 78(2016): 1-12.

[40] Yin, G., Li, A.*, Zeng, Y., et al. A cost-constrained sampling strategy in support of lai product validation in mountainous areas [J]. Remote Sensing, 2016, 8, 704.

[41] Li, A.*, Wang, Q., Bian, J., et al. An Improved Physics-Based Model for Topographic Correction of Landsat TM Images [J]. Remote Sensing, 2015, 7(5): 6296-6319.

[42] Li, A.*, Zhao, W., Deng, W. A Quantitative Inspection on Spatio-Temporal Variation of Remote Sensing-Based Estimates of Land Surface Evapotranspiration in South Asia [J]. Remote Sensing, 2015, 7(4): 4726-4752.

[43] Li, A.*, Zhang, W., Lei, G., et al. Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI Dataset Based on the STARFM Algorithm [J]. ISPRS International Journal of Geo-Information, 2015, 4(3): 1423-1441.

[44] Li, A.*, Deng, W., Kong, B., et al. A study on wetland landscape pattern and its change process in Huang-Huai-Hai (3H) area, China [J]. Journal of Environmental Informatics, 2013, 21(1): 23-34.

[45] Li, A.*, Liang, S., Wang, A., et al. Investgating the impacts of the North Atlantic Oscillation on global vegetation changes by a remotely sensed vegetation index. International Journal of Remote Sensing [J], 2012, 33(22): 7222-7239.

[46] Li, A.*, Jiang, J., Bian, J., et al. Combining the matter element model with the associated function of probability transformation for multi-source remote sensing data classification in mountainous regions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67(1): 80-92.

[47] Li, A.*, Bian, J., Lei, G., et al. Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-series remote sensing data and ground measurements [J]. Remote Sensing, 2012, 4(12): 3857-3876.

[48] Li, A., Huang, C., Sun, G., et al. Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data [J]. Remote sensing of Environment, 2011, 115(8): 1837-1849.

[49] Li, A.*, Deng, W., Liang, S., et al. Investigation on the patterns of global vegetation change using a satellite-sensed vegetation index [J]. Remote Sensing, 2010, 2(6): 1530-1548.

[50] Li, A.*, Liang, S., Wang, A., et al. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques [J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(10): 1149-1157.

[51] Li, A.*, Wang, A., Liang, S., et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS - A case study in the upper reaches of Minjiang River, China [J]. Ecological Modelling, 2006, 192(1-2): 175-187.

  联系方式: 

  通讯方式:610041,成都市人民南路四段9号,中国科学院水利部成都山地灾害与环境研究所 

  电话:028-85224131 

  传真:028-85222258 

  Emailainongli@imde.ac.cn 

版权所有:中国科学院、水利部成都山地灾害与环境研究所 蜀ICP备05003828号川公网安备 51010702001669号
地址:四川省成都市天府新区群贤南街189号 邮编:610213 | 联系我们